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Study of Optimality

Criteria in Design of Experiments

by
A. Hedayat

Department of Mathematics
University of Illinois, Chicago

1. PEreliminaxy.

We perform experiments mainly to estimate or test hypo-
theses about some specified unknown parameters of a given
model efficiently. Different considerations lead us to
different criteria for the choice of the "best" design. Al-

though Definition 2.1 is a response function criterion, most

criteria in design theory are directly related to parameter

estimation. Hence the information matrices play an import-
ant role and thus by Caratheodory theorem we can limit our
search to discrete designs which are supported on sets con-
sisting of finite number of points.

To see how the optimality criteria in design theory a-

rose, we first give an example of the very basic motivation:

Let d be a design and let Y be the vector of observations

obtained under d. Assume

E(Y) = X8, Cov(Y) = ¢°I, (1.1)

where Y 18 an nyxl vector of observations, X 1is an ngk
matrix with known entries specified by d, 8 1is a Kkxl vec-
tor of unknown constants, and I denotes the identity matrix

of order n. In many cases we are only interested in the




Z.

subvector §, of § . With no loss of generallity we can
write g’ = (8,' . 8,'), where g, 1s a vxl vector,

1 sv £ k. According to the partition 0o/ = (el' : 92') the
Model (1.1l) can be written as

B(Y) = (X, 1 Xp) (&), cov(y) = <21, (1.1)¢
82

The information matrix of under 4 and the Model

0
<1
(1.1)’ is Xl'Xl-Xl'Xz(Xz'xz) X,'Xy. We shall denote this
by M,. Note that M, = X'X when v = k,i.e.,§; = n. Now

we consider four cases:

(1) TIo estimate each components of a:

Assume X‘’X is nonsingular, and suppose we want to
estimate each of the individual parameters. By Gauss-Markov
Theorem, the best linear unbiased estimator (b.l.u.e.) 3 of

@ is given by:

8= (xx)"Yxry (1.2)
with
cov(B) = az(x'x)'l. (1.3)
Let xi be the 1i-th column of X and cJ be the
j-th column of X(X’X)™Y, then from (1.2) and (1.3) it follows
that
ﬂi =cf ¥ (1.4)
with
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A 2
Var(Oi) = a (cici). (1.5)

-1 .

’ ’ = ! =
Since (X’X)7(X’X) I, we have cixy bid, where b,
is the Kronecker delta. Applying the Schwarz inequality,

we obtain

(xixi)(cici) > (x_{ci)2 =1 (1.6)

hence

Var(ﬁi) 2_02/xixi. (1.7)

Usually, the experimenter has some amount of freedom

i in the choice of the k vectors Xy o If possible, we would

; like to select a design which estimates each of the parameters
with minimum variance. Observe that the equality in (1.6)

holds if and only if = CXy for a constant ¢, which im-

c
i
plies that X’X 1s a diagonal matrix. Hence, theoretically

speaking, the "best design"” is when X‘’X 1is a diagonal matrix

with diagonal entries as large as possible. (e.g., if xiJ =
0,1, or -~1l; then xix1 £ n, the best design 1s the one for

e

which X'X = nIk.) But such a design does not always exist,

g see Hedayat and Wallis (1979). Wwhen such designs do not exist,
% the question arises to how a best design should be defined. A
reasonable approach is to minimize the average variance of each’
of the estimated parameters or to minimize the generalized

‘ variance, etc.

(11) To estimate linear functions of a subvector g, of 8:

Suppose we want to estimate linear functions of 8 in

o T I 2 e ke ah it e -
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4,
the form qj8;. The b.l.u.e. of qj8, 1is qi@l
with
le [TV 1.8)
Var(q{®,) = o q{M; ay» (1.
where Ql = MJ Q4 (1.9)
and Q = [xl'-xl'xz(xz'xz)'Xé] T, (1.10)

while Ma is any generalized inverse of M;.

In choosing a design for estimating ql'gl there are

many criteria. One of them is based on the following in-

equality
lM"'
9 "4 9
where y . and ., are the maximum and the minimum (non-

zero) elgenvalues of M;, respectively. This inequality gives

a bound for the variance of qf§;:
, 2 14) ! Qyo° (1.12)
Mpin 91910 S Var(ai®y) < upay 9jgyo .

(111) To test hvpotheses:
Suppose in addition Y 1s multivariate normal and we

y = © (v £ k). (Assume My 1is

nonsingular). Then the usual F test has a power function

want to test e1 = 92 =eee=0

depending monotonically (increasing) on a parameter )\ where

A= o s 8] Myhy (1.13)

and thus by (1.11) and (1.13)

PP v
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B0 §19) <\ < ~HEX 916 (1.14)
(o] (o}

where and Emin are the maximum and the minimum eigen-~

Ymax
values of Md'

(iv) To construct confidence region:

Again assume Y 1s multivariate normal and

Md is nonsingular. A 1l-a Jjoint confidence region for

21 is a solid ellipsoid:

2

(Bl‘él)'Md (8;-81) < ozyg(v), if 4“ 41is known, (1.15)

where xi(v) is the 1l-a percentile of the x2 distribution

with v degrees of freedom. Or

2

(ﬁl'al)lMd (31-51) £ stFa(v,n-r), if 4 41is unknown, (1.16)

where Fa(v,n-r) is the 1l-a percentile of the F distribu-

tion with v and n-r degrees of freedom, and

s® - Y/[I-X(Xx'X)"X’X]Y/(n-r) is an unbiased estimator of

o¢ (assume rank (X’'X) = r).

We observe that:

(a) The volume (expected volume, if 02 is unknown) of the

above ellipsoid is proportional to the square root of det M&l:

(b) The semi-exes (expected semi-axes, if 02 is unknown) of
the above ellipsoid is proportional to the square roots of the

eigenvalues of M;l.

In Section 2 we shall study some well-known optimality

criteria. Section 3-7 will be some generalization of those in
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Section 2, or some recent developments in the determination
of optimal designs. Throughout this paper we write the op-
timality criteria as a class of convex nonincreasing func- .
tionals § on the set of information matrices rather than

the class of convex nondecreasing functionals ¢ on the set L

of covariance matrices, since the former is more general than

the latter. For instance, when the covariance matrix of in-
terest is equal to My (as in (1.13)), we have 3(My) =

¥(My) which is convex in M, if § 1s convex in M; dut

not on the other hand. The strict inclusion of one class in
the other is illustrated by the fact that, if );(M ) >...

> xv(Ma) are the eigenvalues of Ma, then ZX% (Ma) = Ei% (Md)
is convex in My but zxg(Ma) is not convex in Ma.

Notation used in the rest of this paper are listed below:

the class of all vxv nonnegative definite
matrices.

éb.
i

Hv,o the class of all vyv nonnegative definite
matrices with zero row and column sums.

I}

f = the class of designs under consideration.

Q

= {Md’ d e N.

Also, let Mgl 2 M42 2 e 2 Y4y be the eigenvalues of
Mg
necessary, we let ¢ denote an approximate design (a proba-

., Note that if ¢ ¢ Bv,o, Mgy = O, for all 4 € D. 1If

bility measure on the experimental space) and Me be the
assoclated information matrix.
To avold messy expressions, the dimensions of matrices

should be deduced from the context if they are not explicitly i

specified.
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2. om l1l-Kno o mgli i ia.
Assume (¢ c BV.
I. G-optimality.
Smith (1918) introduced a response function criterion

which can be stated as follow:

DRefinition 2.,1. A design g% € p is G-optimal if and only
irf

A Pa Pal
min max var EYx = max Var EYx,

EeN Xey Xey &¥
where é;x is the b.l.u.e. of EY and x 1s the experimental
space. Kiefer called it G-optimal (for global or minimix),
since we are minimizing the maximum variance of any predicted

value over the experimental space.

II. D-optimality.
Definition 3.2.2. A design d*¥ € o 1is D-optimal if and

. . . -1y -1
only if M, 1is non-singular and gt% det(Md ) = det(Md*).
Here, "D-" stands for determinant. The concept introduced
and studied by wald (1943) and applied by Mood (1946). This

criterion has many appealing properties;

(1) under normality, if d* is D-optimal, d* minimizes:
(a) The volume (or expected volume, if 02 is unknown,

and rank (Md) is invariant under d) of the smallest in-

variant confidence region on 81205000580, for any given con-

fidence coefficient.

(b) The generalized variance of the estimators of par-

ameters. (see remark below).
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(2) 1n the class of approximate designs, D-optimality o

G-optimality whenever v = k,i.e., 8y = 8.

(3) The design remains D-optimal if one changes the scale
of the parameters: Let gi,eé,...,gé be related to Ays
Roseseshy by a non-singular linear transformation. If ax

is D-optimal for Byseeesfys then d* 1s also D-optimal for

ei,...,eé. The analogue for other criteria is false in even j

the simplest settings.

Remark: Suppose X = (X;,X,,...,X )’ 1is distributed as multi-
variate N(y,Y). The determinant of V is called the gener-
alized variance of X as defined by Wilks (1932).

In the theory of linear regression, under normal assump-
tion, §1== (@l,ﬁz,...,@v)’ is distributed as N(gl,M‘lgz), so
the generalized variance of (61,32,...,ﬁv) is equal to the de-

12 2v 1

terminant of Ma g~ which is the product of o and det M&

(Assume My is non-singular).

Definition 2.3. A design d* ¢ o id linear optimal (L-opti-

mal) if and only if min L(M&l) = L(Mai) where L is a nonneg-
den

ative linear functional on ¢.
One of the most useful linear criteria of optimality is

A-optimality defined when
-1 , -1
L(Md ) = Tr(My ).

Definition 2.4. A design d* e o is A-optimal if and only

if Mgy 1is non-singular and min Tr(M;l) = Tr(M&i). "p="
den

stands for average. In & gstatlstical sense, if d* 1s A-opti-




mal, it minimizes the average variances of 81’62”"’8v'
This criterion was introduced and studded by Elfving (1952)
and Chernoff (1953).

Iv. L-optimality.

Definition 2.5. A design d* e n 1is E-optimal if and only

-1 -1
if g%% Mgy = Mgxy+ E-optimality was first considered in

hypothesis testing (Wald (1943), Ehrenfield (1955)). "E-"
stands for eigenvalue. It has the following properties:

(1) 1In hypothesis testing., Under the normality assumption,
an E-optimal design maximizes the minimum power of the
associated F-test of size o on the contour 818y = ¢ for

every a and c. (See (1.14)).

(2) In point estimation, An E-optimal design minimizes the
maximum variance of the b.l.u.e.'s of the qig, over

all vxl vectors gq, with gfq; = 1. (See (1r.12)).

(3) 1In interval estimation: An E-optimal design minimizes
the largest semi-axis of the (hyper) ellipsoid when normality
assumptions are made on the observations,

Now it seems natural to specify some optlimality functional
$ on ¢ and to pose the problem: Find d to minimize §(Md).
We call § an optimality criterion. The above well-known

criteria are then:

. -1y Yo
D-optimality: @D(Md) = det(Md ) =1 ugy

i=1

e vy N




L-optimality: @L(Md) =

v
A-optimality: QA(Md) = Tr(M&l) = Y “di (2.3)
E-optimality: QE(Md) = ua&. (2.4)

is

(2.1), (2.3) and (2.4) are regarded as infinite if My
singular.

Note, in case Cc ® » the definitions of D-,A-,E-

"V ,0
optimality are similar, one can simply replace the index v

in (2.1), (2.2) and (2.4) by v-1.

3. - i -0 mality:
Assume ¢ c R . When Tr(Md) = ; ugy = A 1is a constant,

for all 4 € g, the D-, A-, E~optimalities are attained when

all the s are equal (we call such a design a symmetric

ugy'
design). Unfortunately, symmetric designs do not always
exist. Intuitively, in the absence of a symmetric design,

we may want to believe that the '"closest" design to the hypo-
thetical symmetric design is a reasonable design to use. Shah
(1960) proposed the Euclidean distance between the vector of
eigenvalues of the designs as the.measure of distance between
the corresponding designs. Thus, according to Shah (1960) if
there is no symmetric design in D, we should use the design

d which.minimizes the Euclidean distance between (“dl""’
“dv) and the vector of eilgenvalues of the hypothetical symmetric
design, (A/V,...,A/V), i.e.,

=

— 2
L% 2, - (= udi)z/v_] (3.1)

Clearly, this is only a heuristic approach with no statis-
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tical Justification. However, it has the merit that when

Tr(Md) is a constant, the minimization of (3.l) is equiva-
2

m

a1J which is easier to handle.

lent to that of TrM® = v
4 43

Define g:a = [0, + c©©] such that

2 2 2

i,J
Formally, we have:

Definition 3.1. Suppose Tr(Md) = A 1is a constant for all

d € 8, A design d*¥ ¢ 5 1is called S~optimal if and only if

d* minimizes Q(Md) (as in 3.2) for all d € g. i
Motivated by Shah's criterion, Eccleston and Hedayat

(1974) proposed a similar procedure in the case when TrM,

is not a constant.
Let ¢’ ¢ ¢ Dbe such that the matrices in ¢’ have max-

imam trace.

i; Definition 3.2. A design d* € o is (M,S)-optimal if and
only if Mg € ¢’ and d* minimizes @(Md) (as in (3.2)),
for all d € p’, where g’ = {den; Mdec'J.

A geometric interpretation of (M,S)-optimality can be

given as follow. Set

Sp = Uugyseeoougy)s gy > 05 T Mai = Al

and
. . 2 —
SAB= {(udl,°“!Udv), udi> O, Eudi= A, Eudi— Bjo
Then S, 4is an open simplex and S,, is part of a (v-2)-di- ?

mensional sphere with (A/V,...,A/v) as the center and the

quantity I

a2 R o
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3

r - (Y )2 . as the radius, when
Po= 2Ugy B H /v] ’

Li i
B> Ae/v. The procedure of finding an (M,S)-optimal de-

sign is the same as to choose a simplex S as far away from

A
the origin as possible, and then find a design with the vec-
tor of eigenvalues on SA which 1is closest to the center

of the simplex in the Euclidean sense.

In the Rv o
2

placeing v by v-1.

context, same arguments hold excepf re-

4, ap—gziggz a.

In Keifer (1974), the following family of criteria was

introduced. We shall describe it in the @ 6 context. i
Let L ;
- Ti -PyP |
2, (M) = [ or(uP)]
V. p 1
Tl T ugiP
=T Sy Ml oo p< oo . (4.1)

Definition 4,1. A design d* € o is op-optimal if and only
if d* minimizes @p(Md), d € ».

When ¢ ¢ A, s We may restrict ourself to 4 with
M.d nonsingular. The following theorem will give a connection

between D-, A-, E-criterion and the Qp-criterion.

» v
i Theorem 4.1. (i)  #;(My) = 3 Tr(Mj1) = 3 (1rlu;i)
,‘ S
-1\Y
(1) ao(My) = o sp(My) = (1 wa1) (s.2)

(111) s (M) = ;ii 1 (My) = ugy

2 {

D iy T A 013 A U




Proof: (1) is clear
1

v -
1 -pP7P
(ii) &p(Md) = {-Vi:l udi_,

v

1 1 5 ugi ‘
log op(Md) =5 log [V {21 diJ . i
As p tends to zero, the right hand side goes to s B8O by

o0

applying L'Hospital's rule, we obtain

[

-
[
8

lim log &

1im pMy)

1+ <t
[
[
=
<
=

Hence 1im ¢ _(M.) =
Lim 4,00 = (

(111) Let u('ii = ""‘dvudi .
Then

rd -

v
14p
log 15 7 (WasHay) ]

el o

log #,(M,)

v

108 [5 ugy 7 uf®]

|
el N

1 -1, 1 TP
log 7 + 108 gy + 3 log (izlu di)'

= 3
P

Since p&i £ 1, for all 1},




14,

1 5 p
!
we conclude 0 £ log (151 u di) £ log V.
Hence 1m 3 log ( ; u'gi ) =0
) p—c0 p i=1 :
i -1
i Therefore lim log & (M,) = log u
: Y p‘'d dv ?
-1
and consequently 1im ¢ (M) = .
D p‘'d dv
Lorollary 4.1.

(1) when p = 1, & -criterion is equivalent to A-opti-

P
mality.

(1ii) wWhen p approaches to O, the limiting case of

§ -criterion is equivalent to D-optimality.

P
(1i1) wWhen p approaches to e, the limiting case of

ép-criterion is equivalent to E-optimality.

Remark: The op-criterion in the Bv o context 1s
2

1
: ra V-l o-pp
4 p(My) = {37 T nas |

5. lniversal Optimality.
1n Keifer (1975), a strong optimality criterion was con-
sidered. Here, we restrict ourself in a_ _. (Since in R,

v,0
context. it is easier.)

Definition 9.,1. We say d* € § 1is a universally optimal de-
§ sign, 1f d* minimizes #(M,), d € o for any ¢:“v,0 — (==,

+¢a]

T T Y- st YT o A | . T . v e




satisfying:
(1) $ is convex,
(11) » (bM) is nonincreasing in the (5.1)

scalar p > 0 for each M ¢ Py.0 °
3

(111) & 1is invariant under each permu-
tation of rows and (the samc on)

columns.

Since -Tr(M) satisfies (5.l1), immediately we have

the following theorem:

Theorem 5s1. If d* € o 1is universally optimal, then Ter*

is maximum.

Definltion 5,2. A matrix M 1is called a completely symmetric
(c.s.) matrix if M = al, + 8J, where a,B are scalars and

1, is the identity matrix, J, consists of all 1l's.

Jemma 7,1. If Ml and M2 are two completely symmetric
matrices in Ry.0° then there exists an h such that M? = hMl‘
R 4

Proof: Suppose Ml = allv + BlJv

M2 = aalv + BZJV
Mi . l = 0 = ai + Vﬂi = 0 for i = 1,2;
Let h = 52/51 .
Then My, = =VBoI, + BpJd, = h(-vg,I, + lev) = hd; .
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The following theorems are simple tools in determining

such an optimal design.

Iheorem 5,2. Suppose ¢ ¢ ﬁv,o contains a Md* for which

(a) My 1s c.s.

(b) TrM;, = max TrM,.
den

(5.2)

Then d* 1is universally optimal in g.

Proof: From Theorem 5.1 1t suffices to show that Q(Md*)
minimizes @(Md) for all 3 satisfies (5.1), My € ¢’ where
n’ ¢ ¢ conslsts of the matrices which have maximum trace.

For any Md € ¢!, let TMd be obtained from M.d by per-
muting rows and éolumns according to «, and let i% =

T otMy syt the symmetrized version of Mj. By (5.1)(a) and (c)
.

we have

s(Mg) < £ 1, a(M,) = a(M,), (5.3)
T

for any & satisfying (5.1l). Of course Ed need not be in

¢, but Md is c.s. and in Rv,O' By Lemma 5.1, M.d is of

the form bM,, for some b > 0. Now Tr(ﬁd) = Tr(Md). But

Tr(Md) = Tr(Md*) by assumption. This implies b = 1 and
hence M; = M. By (5.3), #(My,) = ¢(My) < #(M;) for all
satisfying (5.1) and Md € ¢’. Therefore My is universally

optimal.

Theorem 5.3. Suppose an My, satisfying (5.2) exists. Let
i, o - (-0, ¥ ] be a function satisfying (5.1). 1If, in
2

addtion, $ is strickly convex (and hence also "nonincrease-

L PR L




_4_-__,._._-__..,.,,,

17.

ing" in property (ii) is replaced by "decreasing"), then

every &-optimal d’ has M,, = M

dq g% (L.e., d’ 1is also

universally optimal).

Proof: Let ﬁd, =z Myyy1e Since & 1is strictly convex, we

have

¢(My,) < v 3, e(tMy, ) = e(My,). (5.4)
T

Again Md' is c¢.s. and in “v,o » this implies that

My, = PMy, for some b > 0. Since My« satisfies (5.2),
Tr(Myx) 2 Tr(My,) which implies b < 1. But if b < 1

21,0 > a(My,) = a(bM,) > e(My,).  (5.5)

This contradicts the assumption that d’ is s-optimal.

*rom (5.4) and (5.5) we can conclude that

b=1 and M, =T4d,

i.e.
e ’ Md‘ = Md* .
And d'’ 1is indeed universally optimal. [:]
Let ¢, and @, be two convex functions satisfying
(5.1). Suppose d* 1is $,-optimal, the following theorem

gives a sufficient condition for d* to be ¢2-opt1mal.

mm.- If le ‘52 on ¢ and ir ‘1(Md*) = ’E(Md*)a
then d* 1is Qz-optimal ir d* is gl-optimal.

Wy~ . RPN
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Proof: Assume d* 1s §,-optimal, then ¢1(Md*) < °1(Md) for |
all d € a. !

By assumption

3o (Mge) = 87(Mgs) < 27(My) < 8y(M,). g

Hence the result.

Example 5.,1. A useful family of criteria in the R, o cOn-
2
text is the Qp-criteria, for 0< p < 00, with the limiting

values

-

- v-1 -1
Qo(Md) = 2 Mai and QOO(Md) = u’d(V-l). Here

p<qga= ¢p(Ma) < @q(Md) with equality if and only if all
Mgy are equal. Hence from Theorem 5.4 if Md* is c.s. and
da* is Qp-optimal = d¥ s Qq-optimal for all q > p.

In the absence of universal optimality, some weaker opti-

mality results which have some useful statistical implications

(for instance, include A-, E-, D-criteria and all ¢p-criteria,
0< p < ») has been discussed by Kiefer (1974).
Observe that (4.1) and (4.2) are equivalent to the follow-

ing:
(a) a¥(My) = 7 Mgy » 0 < P < 03
(b)  &3(My) = "% 108 gy (5.6)
(€) 8o (My) = ugy
o' d Mav °
. _
Let 5 (My) = T fugq)» (5.7)

where f 1is convex on [0, + o©). We want to find conditions

under which a design 4 is Q*-optimal.




Lemma 5.2. If f 1is a convex function on [O, +® ), then

e ) 2 ¥ T e n ) (5.8)
‘1 Mai voogly v-~1 "djJ .

J
for any Md in Bv,o’ with equality if all the gy 8 eare

equal or M, 1is c.s.

Proof: Let P be the (v-1l)yv orthonormal matrix such that

o -

Uq1
¢ —
H%P _Ad_ .

Y le(v'l)

Mugment P with (&, L .., %; and call the resulting
matrix P*,
!
PMdP 0 Ad 0]
PXM Px/ = = .
0] 0] l_-O 0]
2
Assume P* = (pij)’ and iet eiJ = pij .
v Ve
Then v e =1 and T e = ] - = y=l1 .
g=1 4 i Ty
v=1
Also Md = P'AdP =» deJ = 1:1 eiJ H4gi °




v-1 v-l v-1

1=1 v i=1 v-1 eiJ = 1 and €33 2 0.

The convexity of f

"l V"l
vl "' ¥ e n y-1 Y.
v f(ifl v-1 1 i ) £y I V-1 ®yy £lugy)
v-1l
RPN

Hence we have

-1 v v-1
AR M) $,7) eag Tlugg)e (599)

Summing on Jj, we obtain

-1
v=l YV oy N LY
v 3§1 f<v-l Ta33) s izl f(udi)°

If udl = ud2 T e o 0= ud(v—l) = ud (i.e., Md iS C.So)

v-1
= oy (Y=L
Tagy Ty %ig vaL T u (7).

Then

v v
‘ oo (55 md,jj) =¥ 5 £y = (v-1)£(uy)

Vo1 Vo1

’ v-1l v-1

= n fluy) = I flugg).  (5.20)

Theorem 5.5. If @* is given by (5.7) with f convex,
if d* ¢ ¢ satisfies:

and
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(1) M* 1is c.s.

d
v-1l v \

. «

(ii) d* minimizes 351 f(----v_l Mag3)” (5.11)

then d* 1is s*¥-optimal.
Proof: Follows directly from (5.10).
Example: In the case of (5.6), we obtain,

(a) If Mt is c.s. and minimizes T m Y, = d* is
d 3 djJd
@E-optimal.

(vb) 1If Mt is c.s. and maximizes ¢ log Mgy = d* is
$%-optimal (i.e., it is D-optimal).
(¢) If M* is c.s. and maximizes min m_ ., = d* is
d 3 dJjd
%, ~OPtimal (i.e., it is E-optimal).
Also, from Theorem 5.2,
(d) If M* is c.s. and maximizes s m, ., = d* is

d J djJ
@p-optimal, 0K p£ o and more.

6. Iype 1 and Type 2 Criteria.

Cheng (1978) refined Kiefer's criteria and defined a
larger class of optimality criteria that include A-, E-,
D-, all ¢p—criteria, 0O < p < o, and more.

Again, let Cc fv,0° (In the p, context, similar

arguments hold.) Let t_ = max TrM,.
! deg d

Definition 6.1. A design d* e p satisfies optimality criteria

B e e ha .




v-1
of ¥ype 1 if d* minimizes §.(M,) = s f(u,,) where f
£l T 7 gy

is a real-valued function defined on [O,tﬂ) such that

a) f is continuous, strictly convex, and strictly de-~
creasing on [O’tn]' We include here the possibili-
ty that f£(0) = lim f(x) = +o0. (6.1)
X—0
b) f is continuously differentiable on (O,tﬂ), and
f’ is strictly concave on (O,tﬁ), i.e., £f* < 0,

f" > 0, and f" < 0 on (O,tﬁ).

Definition 6.2. A design d* ¢ » satisfies_optimality criteria
of type 2, if d* minimizes ¢f(Md) = Z?i f(“di) where f has
the same property as in Definition 6.1. Except that the strict
concavity of f’ 1is replaced by atrict convexity, i.e., £ > 0
on (O,tﬂ).

Also, 13 optimal o) i =
1.2) is defined to be the pointwise limit of a sequence of
type 1 -criteria.

From (4#.2) and (5.6), the A-, D-, and ép-criterion are
of typ 1 and the E-criterion is a generalized criterion of
type 1 (being the limit of Qp-criteria, as D - 0©). Note

that the A- and D-criteria correspond to the choices of

f(x) = x1 and -log x respectively.

Remarks: (i) There do exist functions satisfying the re-
quirements for a type 2 criterion. For example, let f(x) =

3

ex’~ax over the interval [O,tﬂ] of interest, when € > 0O,

a >0 and € compared with a, 1s small.

R
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(1i) From Section 4 if there is a symmetric design
which maximizes Ter over g, then it is optimal
with respect to a very general class of criteria including

both generalized type 1 and type 2 criteria. E]

It appears that most optimality criteria (universal !
optimality is an exception) which place equal emphasis on
all the parameters can be formulated in terms of the eigen-
values of the information matrix. In Section 7 we shall
introduce another optimality criterion of the form ¢(ud1"'

. ud(v—l)) with - Schur convex or convex symmetric.

7. Schur optimality. :
The concept of Schur optimality was introduced by Magda

(1979). To see how it was defined, let us recall the following:

Definition 7.1. A matrix with nonnegative entries is called
doubly stochastic if the sum of the entries is 1 in every row

and every column.

Definition 7,2. Let I %bve an interval on the real line. A
function #:I™ = R is called Schur convex (after Schur (1923))

if
§ (Sx) £ #(x)

for all x € 1" and every doubly stochastic matrix S. A
Schur convex function is not necessarily convex, e.g.,
¢(xl,x2) = lxl-le. Any Schur convex funcion is symmetric,

because for any permutaion matrix P we have
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3(Px) < #(x) = 5(P"1Px) < &(Px). 1

Hence §(Px) = 3(x) as desired. We have used the fact
that a permutation matrix and its inverse are examples of 1
doubly stochastic matrices. {

While symmetry is a necessary condition to have Schur

convexity it is by no means sufficient. When convexity is

added to symmetry we can insure Schur convexity. Tnis 1s seen
as follow: By Birkhoff (1946) every doubly stochastic matrix

S can be written as a convex sum of permutaion matrices. Let
S = wa;Pi, (¥ay = 1). Then

convexity of ¢(:)  symmetry of ¢(x) :

3(8x) = 8(2a;Pyx) < A 0(P;x) = g b(x)

= 3(x) and this proves Schur convexity.

I

——

Assume ¢ c 8 ., let I [o,t“] and n be the small- i
b ')

est integer for which Mg (n+l) = Md (n42) = *0 0T Moy 0 for all
d e 0.

Define Q(Mﬁ) to be the following vector in I™:

“c.il
a(My) = : . (7.1)

Hdn

For d € » and any Schur convex function & defined on it

and nonincreasing in its arguments, set

3(My) = 8(a(My)). (7.2)




Schur optimality is now defined as follows:

Definition 7.5. A design d* € ¢ 1is called Schur-optimal
if d* minimizes @(Md), for all 4 ¢ s, and all Schur con-

vex functions ¢ nonincreasing in their arguments. f:

Note that, if ¢:I - R 1is convex, then

P(x3)s x = (X95%X550005x) (7.3)

is Schur convex on I® because &(°) is symmetric and convex.

From (5.6) D-, A-, ond all Qp—criteria defined so far on the
eigenvalues of the information matrices are instances of Schur

functions. As a symmetric and convex function on In

E(Xl,...,xn) = -min [Xl,xz,.o.,xn}

IKikn
is also Schur convex. This function is associated with E-op-
timality. Note that E-optimality is no longer a limiting case
when delt with as a Schur convex function. To prove Schur opti-

mality, we state the .following very useful tool.

Theorem 7.2. (derived from Ostrowski (1952)).
Let F(xl,...,xn) be a Schur convex and nonincreasing

function in its arguments on 1. Let
Y12 Yy 202 Vi3 Xy 2 Xy 20002 X (7.4)

satisfy the following

Yy teeet ¥, £ Xy +oeot x, for all 1< ¢ < n. (7.5)




F(yl,...,yn) < F(xl,...,xn).

For convenlence, when two vectors x and Yy € In,
Satisfy (7.4) and (7.5) we write y < x.

Applying the above result we can immedlately conclude:

Theorem 7,3. d* is Schur optimal if o(M}) < o(My) for
all d € g.

It should be pointed out that the ordered partial sums
in (7.4) are examples of Schur convex functions. Further

useful results can be obtained in Hardy and Littlewood (1967).

Lemma 7,2. Let M, € cc q and P,(1<i<n) ve n
d = ",0 i

orthogonal matrices such that Mél) = P;lM P, also satisfiles

_ n
M(i)l =0 forall 1< i n. Set M, = s M(i).
d d i=1 d

S

Then

for any Schur convex function ¢ nonincreasing in its argu-

ments we have @(Eh) < @(Ma)-

Proof: Since the Pi's are orthogonal, we have O(Méi)) =
q(Md) and hence Q(Mél)) = @(Md) for all 1< i < n. More-
over, let (udij and {udij denote the eigenvalues of Md
and Mﬂ respectively (and let them be ordered nonincreasing-

ly.) Then it is known (see Bellman (1970)) that

|93 for L = 1,2,...,\7—1.
o1 -1 d i

By Theorem 7.l we obtain @(Tad) < ;(Md).

Remark: We call M, (defined in Lemma 7.2), an averaged

i
r
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version: of M,.

Verifying the requirements of Theorem 7.3 1s difficult
because of the large variety of information matrices Md'
It is practically impossible to find U(Md)° When averaging
Md properly, however, it is easily seen that finding
U(F%) is a tractable task. Hence comparing q(Md*) and

n(F%) (in view of Theorem 7.4) is often time possible.

Theorem 7.4. d* 1is Schur optimal if o(M,) < (M ) for

all d € a, where .ﬁd is some average version of Md’

Broof. #(My) < #(M;) where the first inequality holds

from the assumption o(ﬁd*) £ n(ﬁd) and the latter from
Lemma 7.2.

Closing remarks: We refer the reader to "Special Issue on
Optimal Design Theory'" No. 14, Vol. A7 (1978) of Communications
in Statists (edited by this author) for further ideas, results
and references. Currently we are preparing a book on the
subject of optimal design of experiments. The book should

be available for distribution within a year or so. Meanwhile,

the interested reader can obtalin preliminary versions of some

chapters of the book.
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